COUNTEREXAMPLES TO CONJECTURES ON 4-CONNECTED MATROIDS

COLLETTE R. COULLARD

Received 20 May 1985 Revised 30 October 1985

Tutte characterized binary matroids to be those matroids without a U_4^2 minor. Bixby strengthened Tutte's result, proving that each element of a 2-connected non-binary matroid is in some U_4^2 minor. Symmour proved that each pair of elements in a 3-connected non-binary matroid is in some U_4^2 minor and conjectured that each triple of elements in a 4-connected non-binary matroid is in some U_4^2 minor. A related conjecture of Robertson is that each triple of elements in a 4-connected non-graphic matroid is in some circuit. This paper provides counterexamples to these two conjectures.

1. Introduction

Familiarity with matroid theory is assumed. For an introduction, see Welsh [11].

Let M be a matroid on E with rank function r. M^* denotes the dual of M, with rank function $r^*(A) = |A| - r(E) + r(E - A)$, for $A \subseteq E$, where |A| is the cardinality of A. A loop of M is a one-element circuit, and a coloop is a one-element cocircuit. Distinct elements $e, f \in E$ are parallel if $\{e, f\}$ is a circuit and in series is $\{e, f\}$ is a cocircuit. A triangle is a 3-element circuit and a triad is a 3-element cocircuit.

For $X \subseteq E$, $M \setminus X$ denotes the deletion of X and M/X the contraction of X. For X, Y disjoint subsets of E, $N = M \setminus X/Y = M/Y \setminus X$ is a minor of M. E(N) denotes the set of elements of N. We say that N contains set A if $A \subseteq E(N)$.

Given integers $0 \le n \le m \ne 0$, U_m^n denotes the *uniform* matroid on m elements, in which every n-element subset is a base. For a graph G, $\mathcal{M}(G)$ denotes the usual polygon matroid of G. For integer $n \ge 3$, \mathcal{W}_n denotes the whirl matroid with n spoke elements and n rim elements.

Let M be a matroid on E. A partition $\{S, T\}$ of E is called a (Tutte) k-separation [10], for some positive integer k, if $|S| \ge k \le |T|$ and $r(S) + r(T) - r(E) \le k \le k - 1$, or, equivalently, $r(S) + r^*(S) - |S| \le k - 1$. M is n-connected, for some integer $n \ge 2$, if M has no k-separation for k < n.

A matroid is binary if it can be represented over GF(2). In [9] Tutte characterized binary matroids to be those matroids without a U_4^2 minor. Bixby strengthened Tutte's result in [1], proving that a 2-connected matroid is non-binary if and

only if each element is in some U_4^2 minor. In [6] Seymour provided the analog of Bixby's result for 3-connected matroids; he proved that a 3-connected matroid is non-binary if and only if every pair of elements is in some U_4^2 minor. (Later in [7] he showed how that result follows directly from his theory of 2-roundedness.)

In [6], Seymour made the following natural conjecture for 4-connected matroids.

Conjecture 1. [6] If M is a 4-connected non-binary matroid and e, f and g are three elements of M, then M has a U_4^2 minor containing $\{e, f, g\}$.

Oxley [3] proved that every triple in a 3-connected non-binary matroid is either contained in some U_4^2 minor or is the set of spoke or rim elements of some W_3 minor. Oxley's result provided some evidence that Conjecture 1 was indeed true.

A necessary condition for a set of elements to be contained in a U_4^2 minor is that it be contained in both a circuit and a cocircuit. Thus, the following conjecture of Robertson, when restricted to non-binary matroids, is a weakening of Conjecture 1.

Conjecture 2. [6] If a, b, c are three elements of a 4-connected non-graphic matroid, then there is a circuit containing $\{a, b, c\}$.

In [4], Robertson and Chakravarti proved Conjecture 2 for cographic matroids. Seymour [5] has proved that every 4-connected binary matroid is either graphic, cographic, or R_{10} , the 10-element matroid represented over GF(2) by the matrix of all possible vectors consisting of three ones and two zeros. Having verified that Conjecture 2 holds for R_{10} , Seymour's theorem implies Conjecture 2 is true for regular matroids. In [8], Seymour generalized this result to binary matroids, leaving the more general non-binary problem still open.

In Section 2, we present a 12 element counterexample to Conjecture 1 and prove that this counterexample is minimal. In Section 3, we present a counterexample to Conjecture 2 for non-binary matroids.

2. Counterexample to Conjecture 1

Let P_{12} be the 12-element matroid represented over R, the real numbers, by matrix A_{12} below, where the element set of P_{12} is $\{a, ..., l\}$, as labeled. The matrix is partitioned to display its symmetry and structure. The non-identity part is symmetric. Notice the four obvious W_3 minors.

	а	b	c	đ	е	f	g	h	i	j	\boldsymbol{k}	l
1	[]	0	0	0	0	0	0	1	1	1	0	0]
									1			
	0	0	1	0	0	0	1	1	0	0	0	_1
									0			
	0	0	0	0	1	0	0	1	0	1	0	1
	0	0	0	0	0	1	0	0	1	1	1	0

Fig. 1. Matrix A11

Lemma 1. P_{12} is non-binary.

Proof. The lemma follows from Tutte's characterization of binary matroids and the fact that $U_4^2 \cong P_{12} \setminus \{c, j, k, l\}/\{d, e, f, g\}$.

Lemma 2. P_{12} has no U_4^2 minor containing $\{a, b, c\}$.

Proof. Suppose $N=P_{12}\setminus X/Y\cong U_4^2$, where X is coindependent and Y is independent, with $\{a,b,c\}\subseteq E(N)$. Since $r(P_{12})=r^*(P_{12})=6$ and $r(N)=r^*(N)=2$, |X|=|Y|=4. It is easy to show that $\{a,b,d,e\}$, $\{a,c,d,f\}$, and $\{b,c,e,f\}$ are cocircuits of P_{12} ; thus $|\{d,e,f\}\cap X|\le 1$.

For any $y \in \{g, h, i, j, k, l\}$, $\{a, b, c\}$ contains a loop or parallel elements in $P_{12}/\{d, e, f, y\}$. Thus $\{d, e, f\} \subseteq Y$. Suppose $|\{d, e, f\} \cap Y| = 2$. By symmetry, assume $\{e, f\} \subseteq Y$. Then since a and j are parallel in $P_{12}/\{e, f\}$, it must be that $j \in X$. Since $\{a, h, i\}$ is a triad of $P_{12} \setminus j$, either $h \in Y$ or $i \in Y$, yielding a contradiction in either case, due to circuits $\{a, c, e, h\}$ and $\{a, b, f, i\}$ of P_{12} . Thus, $|\{d, e, f\} \cap Y| = 1$, and $|\{d, e, f\} \cap X| = 1$.

By symmetry, assume $E(N) = \{a, b, c, d\}$, $e \in X$ and $f \in Y$. Since $\{a, b, i\}$ is a circuit of P_{12}/f , it must be that $i \in X$. Similarly, $\{b, d, l\}$ is a triad of P_{12}/i , implying that $l \in Y$. Now $\{a, d, h\}$ and $\{b, d, k\}$ are triangles of $P_{12}/\{f, l\}$, implying that $X = \{e, h, i, k\}$, and hence $Y = \{f, g, j, l\}$. But $\{a, b, f, g, j, l\}$ is a circuit of P_{12} , implying that a and b are parallel in N, a contradiction.

We show that P_{12} is 4-connected indirectly, making use of the following observation.

Proposition 1. Let A be a (0,1)-matrix and let M_1 , M_2 be the matroids on E, the column set of A, represented by A over R and GF(2), respectively. Assume M_1 and M_2 have the same rank. Every k-separation of M_1 is a k-separation of M_2 .

Proof. For any square submatrix D of A, the determinant of D can be written as a sum of +1's and -1's (where +1=-1 over GF(2)). If the determinant over \mathbb{R} is zero, then there is an even number of terms in the sum, implying that the determinant over GF(2) is zero. It follows that $r_2 \le r_1$, where r_i is the rank function of M_i , i=1,2, which, together with the fact that M_1 and M_2 have the same rank, implies that if $\{S, T\}$ is a k-separation of M_1 , then $\{S, T\}$ is a k-separation of M_2 .

Let B_{12} be the matroid represented by A_{12} over GF(2). By Proposition 1, if B_{12} is 4-connected, then P_{12} is 4-connected.

Lemma 3. B_{12} is 4-connected.

Proof. It is easy to check that B_{12} has no loops, coloops, series or parallel elements, triangles or triads. Suppose $\{S, T\}$ is a k-separation of B_{12} , $k \le 3$, with $|S| \le |T|$. Then $|S| \ge 4$. We claim that B_{12} has no 4-element circuit that is also a cocircuit. Suppose such a circuit C exists. Let B be the base $\{a, b, c, d, e, f\}$ of B_{12} , and B^* the cobase $\{g, h, i, j, k, l\}$. If $|C \cap B| = 3$, then C is a fundamental circuit with respect to B. It is easy to check that no fundamental circuit with respect to B is a cocircuit. Similarly, $|C \cap B^*| \ne 3$. Thus, $|C \cap B| = |C \cap B^*| = 2$. The circuits of this type can be enumerated by finding all pairs of columns of B^* that meet in two rows.

These circuits are: $\{c, f, g, k\}$, $\{b, e, g, l\}$, $\{c, f, h, j\}$, $\{a, d, h, l\}$, $\{b, e, i, j\}$, $\{a, d, i, k\}$, none of which is a cocircuit. Having verified the claim, we may assume $|S| \ge 5$.

Suppose |S|=5. Then $r(S)+r^*(S)\leq 7$, from which it follows that $r(S)\leq 3$ or $r^*(S)\leq 3$. Since $B_{12}\cong B_{12}^*$, the dual of B_{12} , assume $r(S)\leq 3$. Since there are no circuits with fewer than 4 elements, r(S)=3 and S is the union of 4-element circuits. But then S contains two distinct circuits C_1 , C_2 with $|C_1\cap C_2|=3$, implying, since B_{12} is binary, that there are parallel elements, a contradiction.

Assume |S|=|T|=6. Then $r(S)+r^*(S) \le 8$. Again $r(S) \le 3$ implies a contradiction. We conclude that $r(S)=r^*(S)=4$. If S contains a 5-element circuit C_1 , then S contains a circuit C_2 such that $|C_1 \cap C_2| \ge 3$, implying that B_{12} has a triangle or parallel elements, a contradiction. Assume, therefore, that S is the union of 4-element circuits that pairwise have intersection of size 2. Similarly, S is the union of 4-element cocircuits. Since no 4-element circuit is a cocircuit, S contains a 4-element circuit C and a 4-element cocircuit C^* such that $|C \cap C^*| = 3$, contradicting the fact that B_{12} is binary.

Lemmas 1, 2 and 3, together with Proposition 1, establish that P_{12} is indeed a counterexample to Conjecture 1. Next we show that P_{12} is a minimal counterexample.

Lemma 4. P_{12} has no proper minor that provides a counterexample to Conjecture 1.

Proof. Suppose M is a non-binary proper minor of P_{12} and has 3 elements x, y, and z not contained in a U_4^2 minor. Let X, Y be coindependent, independent, respectively, such that $M = P_{12} \setminus X/Y$. By duality, assume $X \neq \emptyset$. Let $B = \{a, b, c, d, e, f\}$ and $B^* = \{g, h, i, j, k, l\}$. Suppose $|X \cap B^*| \neq \emptyset$. By symmetry, assume $g \in X$. Now $P_{12} \setminus g$ has triads $\{b, i, k\}$, $\{c, h, l\}$, $\{d, k, l\}$, $\{b, f, j\}$, $\{c, e, j\}$. Since M is 4-connected, $T \cap Y \neq \emptyset$, for each triad T in this list. It follows that $|Y| \geq 3$. Similarly, if $X \cap B \neq \emptyset$, then $|Y| \geq 3$. Thus, we can assume $|Y| \geq 3$. The same argument provides $|X| \geq 3$. Clearly |Y| = 3 or |X| = 3. By duality, assume |X| = 3. Then |Y| = 3 or 4. If |Y| = 4, then M is a rank 2, 1-element extension of U_4^2 . It is easy to check that the only 3-connected rank 2, 1-element extension of U_4^2 . It is easy to check that the only 3-connected rank 2, 1-element extension of U_4^2 . It is easy to check that the only 3-connected rank 2, 1-element extension of U_4^2 . Since M is 4-connected, M has no circuits or cocircuits with fewer than 4 elements. Thus, $M \cong U_6^3$, and again is not a counterexample. This completes the proof.

We have recently learned that Jeff Kahn [2] has also found a counterexample to Conjecture 1. We note that Kahn's example, call it M_K , has 15 elements and is not shown to be minimal. As Kahn states in his paper, M_K is obtained from a binary matroid by declaring one circuit/hyperplane to be independent. (This construction is known to produce a matroid.) He asks if every counterexample to Conjecture 1 can be obtained in this way. The answer is no. To see that P_{12} is not the result of this construction, observe that if it were, then B_{12} would be the original binary matroid, since base $B = \{a, b, c, d, e, f\}$, having fundamental circuits with fewer than seven elements, could not be the new base. Now B_{12} has 2 circuit/hyperplanes that are independent in P_{12} : $C_1 = \{a, b, c, j, k, l\}$ and $C_2 = \{d, e, f, g, h, i\}$. One can show that P_{12} is obtained from B_{12} by first declaring C_1 to be independent and then declaring C_2 to be independent.

3. Counterexample to Conjecture 2

This section presents a counterexample to Conjecture 2 for non-binary matroids. Unfortunately, P_{12} does not provide a counterexample; each triple is contained in some circuit.

Let P_{16} be the matroid represented over \mathbb{R} by the matrix D_{16} in Figure 2, where the element set of P_{16} is $\{a, ..., p\}$, as labeled. Note that D_{16} is a standard representative matrix for $\mathcal{M}(K_{4,4})$ as labeled in Figure 3. Since $\mathcal{M}(K_{4,4})$ is 4-connected, P_{16} is 4-connected, by Proposition 1.

а	\boldsymbol{b}	c	d	е	f	g	h	i	j	k	l	m	n	0	p
1	0	0	0	0	0	0	1	0	0	1	1	1	1	0	0
0	1	0	0	0	0	0	1	1	0	0	1	0	0	1	1
0	0	1	0	0	0	0	0	1	1	0	0	1	1	0	1
0	0	0	1	0	0	0	0	0	1	1	0	0	0	1	0
0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	1

Fig. 2. Matrix D₁₆

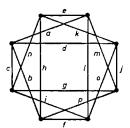


Fig. 3. Graph K_{4.4}

Lemma 5. P_{18} has no circuit that contains $\{a, b, c\}$.

Proof. Suppose C is a circuit of P_{16} with $\{a, b, c\} \subseteq C$. Then $C - \{a, b, c\}$ is a circuit of $M = P_{16}/\{a, b, c\}$. Now M is graphic, represented by G in Figure 4. For each circuit C_1 of M, there exists a unique circuit C_2 of P_{16} such that $C_1 \subseteq C_2$. Below is a list of all circuits of M. In parentheses after each circuit in the list is the collection of elements from $\{a, b, c\}$ needed to complete that circuit to a circuit of P_{16} . Since $\{a, b, c\}$ does not appear in parentheses, the proof is complete.

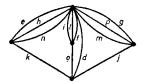


Fig. 4. Graph G

Table 1. Circuits of M

kegj (ac)	khfo (b)	ofd (b)
kepj (ab)	khlo (ab)	old (a)
kemj (a)	khio (bc)	oid (c)
khgj (bc)	knfo (bc)	dgj (c)
khpj (-)	knlo (ac)	dpj(b)
khmj (ab)	knio (-)	đmj (a)
kngj (c)	ofgj (bc)	eh (ab)
knpj (bc)	ofpj (b)	en (ac)
knmj (ac)	ofmj (ab)	hn (bc)
ked (a)	olgj (ac)	il (ac)
khd (b)	olpj (ab)	if (bc)
knd (c)	olmj (-)	If (ab)
kefo (ab)	oigj (c)	mp (ab)
kelo (a)	oipj (bc)	mg (ac)
keio (ac)	oimi (ac)	pg (bc)

We have not determined whether P_{16} is a minimal counterexample to Conjecture 2. Note that P_{16} is non-binary, and is hence a counterexample to Conjecture 1 as well. Finally, it can be seen that P_{16} is not obtained from a binary matroid by declaring one circuit/hyperplane to be independent.

References

- [1] R. E. Bixby, *l*-matrices and a Characterization of Non-Binary Matroids, *Discrete Math.* 8 (1974), 139-145.
- [2] J. KAHN, A problem of P. Seymour on Non-Binary Matroids, Combinatorica 5 (1985), 319-323.
- [3] J. G. Oxley, On Non-Binary 3-Connected Matroids, Trans. Amer. Math. Soc., to appear.
- [4] N. ROBERTSON and K. CHAKRAVARTI, Covering Three Edges with a Bond in a Nonseparable Graph (abstract), Annals of Discrete Mathematics 8 (1980), 247.
- [5] P. D. SEYMOUR, Decomposition of Regular Matroids, Journal of Combinatorial Theory (B) 28 (1980), 305-359.
- [6] P. D. SEYMOUR, On Minors of Non-Binary Matroids, Combinatorica 1 (1981), 387-394.
- [7] P. D. SEYMOUR, Minors of 3-connected Matroids, European Journal of Combinatorics 6 (1985), 375—382.
- [8] P. D. SEYMOUR, Triples in Matroid Circuits (1983), to appear in European Journal of Combina-
- [9] W. T. TUTTE, Lectures on Matroids, Journal of Research of the National Bureau of Standards 69B (1955), 1-47.
- [10] W. T. TUTTE, Connectivity in Matroids, Canadian Journal of Mathematics 18 (1966), 1301—1324.
- [11] D. J. A. Welsh, Matroid Theory, Academic Press, London (1976).

Collette R. Coullard

School of Industrial Engineering Purdue University West Lafayette, Indiana 47907 U.S.A.